Cost Efficient Gnss Aided Mems Ins

Cost-efficient GNSS aided MEMS INS

ER-GNSS/MINS-05:
1. High reliability and low cost MEMS gyroscope and accelerometer;
2. Built-in full-band full-system dual-antenna positioning and orientation GNSS module;
3. Variety of data interface, support RS422/RS232 and CAN.

Cost-efficient GNSS aided MEMS INS

Cost Efficient Gnss Aided Mems Ins

Get Price Now



    Share to:

    Introduction

    Introduction
    ER-GNSS/MINS-05 is a Cost-efficient GNSS aided MEMS INS with a highly reliable MEMS inertial measurement unit and a dual-antenna full-system full-band positioning and directional satellite module. The integrated navigation fusion algorithm can provide continuous, accurate and reliable positioning, attitude and speed information. It has a variety of communication interfaces and provides standardized user communication protocols, which can meet the aviation, land, marine and other applications.

    Features
    1.High reliability and low cost MEMS gyroscope (bias instability <2°/h) and MEMS accelerometer (bias instability <25ug). The working temperature is -40℃~+80℃, and the temperature compensation of the gyroscope and accelerometer is carried out in the working temperature range, which has better zero bias performance.
    2.Built-in full-band full-system dual-antenna positioning and orientation GNSS module, supporting single-antenna high-precision positioning and velocity measurement, supporting dual-antenna fast orientation function.
    3.The system can provide accurate integrated navigation information, attitude up to 0.1°, post-processing 0.03°, heading 0.1°, post-processing 0.05°
    4.Variety of data interface, more easy to install and use, support RS422/RS232 and CAN.
    5.Precision aluminum alloy shell, high reliability, can be widely used in land, aviation, navigation

    Application areas
    UAV, flight recorder, intelligent unmanned vehicle
    Roadbed positioning and orientation, channel detection
    Unmanned surface vehicle, underwater vehicle

    Specifications

    1. System parameter

    ER-GNSS/MINS-05
    Roll & Pitch Accuracy 0.1°
    0.03°(Post Processing)
    Heading 0.1° Dual Antenna GNSS(baseline 1m)
    0.05°(Post Processing)
    Speed accuracy 0.03m/s
    Alignment Time 3min (Dual Antenna GNSS)
    6min (Single Antenna GNSS)

    2. Sensor parameter

    Gyro Performance
    Item Parameter Unit
    Range ±450 deg/s
    Full temperature bias ≤36 °/h
    Angle random walk ≤0.15 °/ √h
    Bias instability ≤2 °/h
    Bias stability (1σ) ≤8 °/h
    Bias repeatability (1σ) ≤8 °/h
    Scale factor non-linearity ≤50 ppm
    Bandwidth 472 Hz
    Accelerometer Performance
    Item Parameter Unit
    Range ±16 g
    Full temperature bias ≤3 mg
    Rate random walk ≤0.025 m/s/√h
    Bias instability ≤0.025 mg
    Bias stability (1σ) ≤0.2 mg
    Bias repeatability (1σ) ≤0.2 mg
    Scale factor non-linearity (±1g) 0.1 %FS
    Bandwidth 333 Hz
    Barometer
    Parameter value Unit
    Pressure range 10~1200 mbar
    Accuracy 25℃,750mbar ±1.5 mbar
    Error band,-20℃~+85℃,450~1100mabr ±2.5 mbar
    Temperature -40℃~+85℃ \
    Long-term stability ±1 mbar/year
    Magnetometer
    Sensor Filed Range ±2 gauss
    Sensitivity 11000 LSB/G
    Temperature Sensor

    Sensitivity

    14 LSB/℃
    Field Resolution 1.2 mgauss
    X-Y-Z Orthogonality 90±1 Degree
    GNSS
    Supported Navigation System BDS/GPS/GLONASS/Galileo/QZSS
    Main ANT Frequency BDS:B1L, B2L, B3L

    GPS:L1C/A, L2P(Y)/L2C, L5

    GLONASS: L1, L2

    Galileo: E1, E5a, E5b

    QZSS: L1, L2, L5

    Slave ANT Frequency BDS:B1L, B2L, B3L

    GPS:L1C/A, L2C

    GLONASS: L1, L2

    Galileo: E1, E5b

    QZSS: L1, L2

    Position Accuracy (RMS) Single point positioning Horizontal 1.5m
    Altitude 2.5m
    DGPS Horizontal 0.4m+1ppm
    Altitude 0.8m+1ppm
    RTK Horizontal 0.8cm+1ppm
    Altitude 1.5cm+1ppm
    Accuracy of observation (RMS)
    BDS GPS GLONASS Galileo
    B1I/L1 C/A/G1/E1 pseudo-range 10cm 10cm 10cm 10cm
    B1I/L1 C/A/G1/E1 Carrier Phase 1mm 1mm 1mm 1mm
    B3I/L2P(Y)/L2C/G2 pseudo-range 10cm 10cm 10cm 10cm
    B3I/L2P(Y)/L2C/G2 Carrier Phase 1mm 1mm 1mm 1mm
    B2I/L5/E5a/E5b pseudo-range 10cm 10cm 10cm 10cm
    B2I/L5/E5a/E5b Carrier Phase 1mm 1mm 1mm 1mm
    Time accuracy (RMS) 20ns
    Speed accuracy (RMS) 0.03m/s
    First positioning time <30s
    Initialization time <5s
    Data update rate <20Hz
    Power & Interface
    Supply Voltage 5~12V
    Supply Consumption 4W
    Interface 1Way-RS422 or 1Way-RS232 and 1Way-CAN and 2Way-TTL(NMEA out and RTCM in)
    Environment
    Operate Temp -40℃~+80℃
    Storage Temp -55℃~+95℃
    Dimension & Weight
    Weight <240g
    Size 65mm*70mm*45.5mm

    More Technical Questions

    1. What Is GNSS-aided MEMS INS and How Does It Work?

    2. How to Improve the Performance of MEMS Inertial Navigation Systems?

    3. Full-temperature Performance Optimization Method For MEMS accelerometer

    4. Classification And Performance Improvement Of MEMS Gyroscope

    5. MEMS Accelerometer Packaging Technology

    6. Performance Analysis of GNSS RTK Timing


    More Products

    Cost Efficient Gnss Aided Mems Ins
    Cost-efficient GNSS aided MEMS INS
    High Precision Mems Integrated Navigation System
    High-precision MEMS Integrated Navigation System
    Mapping Level Ultra Precision Gnss Mems Ins
    Mapping-level & Ultra-precision GNSS/MEMS INS
    Low cost MEMS Accelerometer
    High Accuracy MEMS Accelerometer
    High Precision MEMS Gyroscope
    High Performance North Seeking MEMS Gyroscope
    Low Cost FOG INS
    Low Cost FOG INS
    Land Vehicle, UAV, hot, Maritime
    Ask for a Quote



      Menu