Application

Navigation grade MEMS IMU VS Tactical grade MEME IMU

Introduce

Navigation-grade IMU and Tactical-grade IMU are different levels of inertial measurement units (IMU). They have significant differences in accuracy, performance and application scenarios. Navigation-level and tactical-level IMU will be introduced below.

 

Navigation grade MEMS IMU

First of all, navigation-grade IMU is mainly used for general navigation and positioning tasks, and its performance requirements are relatively low. It usually has high accuracy and reliability and can meet the needs of most navigation applications. Through internal sensors such as accelerometers and gyroscopes, the navigation-grade IMU can accurately measure key information such as the acceleration, angular velocity, and direction of objects. After processing, this information can be used to achieve precise positioning and navigation functions, thereby improving driving safety and stability.

 

Tactical Grade MEMS IMU

Tactical-grade IMU have some unique core features. For example, they are able to operate gyroscopes with extremely low bias stability, meaning that bias errors become more stable over time. This stability is critical for high-precision applications such as drone navigation. And for higher-precision applications, such as drone navigation, antenna and weapon platform stabilization, tactical-grade IMU are required. Gyroscopes are known to operate with extremely low bias stability, meaning their bias errors remain relatively stable over time. This feature allows tactical-grade IMU to maintain excellent performance in long-term, high-precision applications. In addition, tactical-grade IMU are usually equipped with high-quality MEMS accelerometers and gyroscopes to provide more accurate data output.

 

It can be seen that navigation-grade IMU and tactical-grade IMU have different emphasis on accuracy, performance and application scenarios. When selecting an IMU, the most appropriate level needs to be determined based on specific application requirements. The following will briefly describe the differences between navigation-grade MEMS IMU and tactical-grade MEMS IMU, and introduce two IMU from the domestic inertial navigation company ERICCO.

 

Navigation grade MEMS IMU VS Tactical grade MEMS IMU

There are significant differences in performance and application between navigation-grade IMU and tactical-grade IMU.

 

First, navigation-grade IMU are usually used in some scenarios with relatively high accuracy requirements, and their performance and accuracy are higher than tactical-grade IMU. The performance and accuracy of tactical-grade IMUs are far inferior to those of navigation-grade IMU, so tactical-grade IMUs are the first choice for demanding applications such as drone navigation. These IMU operate gyroscopes with extremely low bias stability, which means that the bias error becomes more stable over time. This feature is essential for critical missions and high-precision applications such as drone navigation, antenna and weapon platform stabilization.

 

ERICCO is an inertial navigation company that independently develops MEMS IMU. The MEMS IMU it develops are mainly divided into navigation level and tactical level. The following are the company's ER-MIMU-01 (navigation level) and ER-MIMU-03 (tactical level). Level) built-in MEMS gyroscope specification comparison:

ER-MIMU-01 ER-MIMU-03
Bias Instability <0.02deg/hr <0.3deg/hr
Range 100 400
Bias stability (10s 1σ) <0.1deg/hr <3deg/hr
Bandwidth (-3dB) 12Hz 250Hz
Angular Random Walk <0.005°/√h <0.15°/ √h

 

It can be seen from the above table that the accuracy of the built-in gyroscope of the navigation-grade MEMS IMU is much higher than that of the tactical-grade one, especially the bias instability of the navigation-grade one is 0.02, and the tactical-grade one is 0.3. The accuracy is much higher. ER-MIMU-03 has a larger range than ER-MIMU-01.

Summarize

Navigation-grade IMU and tactical-grade IMU are different in accuracy, stability and applicable scenarios. When selecting, the most appropriate IMU type needs to be determined based on specific application requirements. For more professional information, please consult our relevant personnel.


More Technical Questions

1.Application of IMU in the Field of Drones

2.How Does an IMU Work?

3.What is the Difference Between IMU and AHRS?

4.How is IMU used?

5.What does an IMU Stand for?

6.What Does IMU Mean for A Drone?


Products in Article

North-Seeking MEMS IMU
North-Seeking MEMS IMU
High Performance Navigation MEMS IMU
High Performance Navigation MEMS IMU
Low-cost Attitude-control MEMS IMU
High Precision Navigation/Stable Control MEMS IMU
High Accuracy North-Seeking MEMS IMU
High Accuracy North-Seeking MEMS IMU
High Precision Navigation MEMS IMU
High Precision Navigation MEMS IMU
High Precision Stable-control MEMS IMU
High Precision Stable-Control MEMS IMU

Share article:

Ask a Question



    Menu